
pyCub

Lukáš Rustler

B3M33HRO

Lukáš Rustler pyCub B3M33HRO 1 / 15

Introduction

iCub Humanoid Robot
pure Python3

3.8 and higher; tested in 3.11
physics from PyBullet1

visualization in Open3D2

1https://pybullet.org
2https://www.open3d.org

Lukáš Rustler pyCub B3M33HRO 2 / 15

https://pybullet.org
https://www.open3d.org

Installation

Clone the repository: git clone https://github.com/rustlluk/pyCub.git , and then use
one of the following options.

Python only
install Python3.8 or newer
install dependencies (using venv is recommended)

python3 -m pip install pybullet numpy scipy open3d
open3d version 0.16.0 or newer is required
you may need to upgrade pip: python3 -m pip install --upgrade pip

Docker (Linux only)
Install docker-engine
Go to PATH TO REPO/Docker and ./deploy.py -c pycub -p PATH TO REPO -b

The same steps are written either in README at the GitHub repository or in
documentation at: https://lukasrustler.cz/pycub.

Lukáš Rustler pyCub B3M33HRO 3 / 15

https://github.com/rustlluk/pyCub.git
https://docs.python.org/3/library/venv.html
https://docs.docker.com/engine/install/
https://lukasrustler.cz/pycub

Components

Lukáš Rustler pyCub B3M33HRO 4 / 15

Config

Important options:
gui: whether to show GUI; True/False; default: True
end effector: which link is used as EE in Cartesian control; string;
default: ”r hand”
initial joint angles: dictionary with initial angles (in degrees) for
joints. Can be empty.
log: logging settings

log: whether to log; True/False; default: True
period: period of logging; float; default: 0.01; 0 for logging at each step

simulation step: the simulation advances for 1/simulation step; float;
default: 240; low value can break the simulation
self collisions: whether to detect self-collisions of robot links;
True/False; default: True

Lukáš Rustler pyCub B3M33HRO 5 / 15

Config - Objects
way how to load other objects then the robot
can load .urdf or .obj files

URDF from .obj file is created automatically with: mass = 0.2 kg;
lateral friction = 1; rolling friction = 0

Structure:
urdfs:

paths: list of paths to the files; relative to other meshes directory
positions: list of 1x3 lists of positions of the files in world frame
fixed: list of bools; True when the object is not movable, i.e., it is not
influenced by gravity
color: list of 1x3 lists of 0-1 float to specify RGB color; can be an
empty list when URDF is used

Example:
urdfs :

paths: [plane/plane. urdf , ball / ball . obj , table/table .obj]
positions : [[0, 0, 0]], [−0.35, 0, −0.1], [−0.6, −0.4, −0.225]]
fixed : [True, False , True]
color : [[], [1, 0, 0], [0.825, 0.41, 0.12]]

Lukáš Rustler pyCub B3M33HRO 6 / 15

Collision Meshes

To simplify collision detection, PyBullet uses convex hulls of collision
geometries. That means that collisions for concave meshes are not precise.
From that reason, V-HACD is used to decompose collision geometries to
convex parts. Everything is done automatically inside pyCub3.

(a) Original forearm mesh. (b) Decomposed forearm mesh.

3First run with new meshes takes more time as the meshes are decomposed.
Lukáš Rustler pyCub B3M33HRO 7 / 15

https://github.com/kmammou/v-hacd

User Scripts

The most simple example that loads the world and waits until the GUI is
closed is shown below.

import sys
import os
add needed packages to path
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from pycub import pyCub

if __name__ == "__main__":
load the robot with correct world/config
client = pyCub(config="with_ball.yaml")

wait until the gui is closed
while client.is_alive():

client.update_simulation()

Lukáš Rustler pyCub B3M33HRO 8 / 15

Python Path

When running the code from terminal (and not some clever IDE), it is
important to add the necessary modules to python path. There are several
ways how to do it:

1 Add absolute path to icub pybullet to PYTHONPATH. In Docker:
export PYTHONPATH=$PYTHONPATH:/home/docker/pycub ws/icub pybullet

you can it to ∼/.bashrc , so you do not need to call it every time
you open new terminal

2 Add the absolute path to icub pybullet folder in the code as
sys.path.insert(0, PATH). For example, when using Docker it can be
sys.path.insert(0, "/home/docker/pycub ws/icub pybullet")

3 Use sys.path.insert(0,

os.path.dirname(os.path.dirname(os.path.abspath(file)))) in the
code

this works for codes in the examples directory. You need to add proper
number of os.path.dirname() to get to icub pybullet

Lukáš Rustler pyCub B3M33HRO 9 / 15

Simulation Control

The simulation is not updating by itself, i.e., users have to call
pyCub.update simulation() to do one step.
By default, a simulation step is performed only if the last step was
done more than 0.01 second ago, no matter how often you call
pyCub.update simulation().

This is usefull mainly to make visualization slower
you can control it with parameter in pyCub.update simulation(). For
example, to make the visualization run as fast as possible use
pyCub.update simulation(None)

Some function (e.g., moving) can update the simulation automatically

Lukáš Rustler pyCub B3M33HRO 10 / 15

Joints and Links

There are two list for joints and links, pyCub.joints and pyCub.links.
The lists include instances of Joint and Link classes.
The lists include only joints that are not fixed and links that contain
collision geometry.

Important Joint variables:
name: string name of the joint; can be used for Joint Space Movement
robot joint id: index of the joint in URDF; used by PyBullet
joints id: index of the joint in pyCub.joints list; can be used for Joint
Space Movement

The reason to have two sets of indexes is that iCub URDF contains a lot of
fixed joints, and it is easier for users to care only about the moveable ones.

To find a joint index by joint name or vice versa, there is a function
pyCub.find joint id().

Lukáš Rustler pyCub B3M33HRO 11 / 15

https://github.com/rustlluk/pyCub/blob/48fb4b97454a57967e130128f03693098bf21179/icub_pybullet/pycub.py#L703-L733
https://github.com/rustlluk/pyCub/blob/48fb4b97454a57967e130128f03693098bf21179/icub_pybullet/pycub.py#L736-L750

Joint Space Movement

Movement in joint space can be achieved with function
pyCub.move position(self, joints, positions, wait=True, velocity=1,

set col state=True, check collision=True).
joints can be an integer (index of the joint), string (name of the
joint) or list of integers or strings
positions can be a float or list of floats with the same size as joints

if wait is set to True then the command is blocking, i.e., the main
script will wait until the motion is done (all joints are the desired
position or collision occured)

if wait is False, then you can check for the end of the movement in the
main script with pyCub.wait motion done() or pyCub.motion done()

velocity sets the maximum joint velocity. The robot may still go
slower if the trajectory does not allow for higher velocity.
if check collision is True and wait is also True, then the robot stops
even if a collision occurs.

Lukáš Rustler pyCub B3M33HRO 12 / 15

Cartesian Movement

Movement in Cartesian space can be achieved with
pyCub.move cartesian(self, pose, wait=True, velocity=1,

check collision=True).
pose as 6D end-effector pose of type utils.Pose; it contains two
attributes pos and ori that lists of position (1x3) and orientation
(1x4, x , y , z , w quaternion)
other arguments are the same as for Joint Space movement

End-effector of the robot can changed by changing pyCub.end effector of
your pyCub instance with a different instance of pyCub.EndEffector class.

The movement itself is achieved by computing the inverse kinematics of
the input pose and running the joint space movement.
There is no planner included. The resulting trajectories will be
mostly random, and collisions are checked only during movement.

Lukáš Rustler pyCub B3M33HRO 13 / 15

Waiting for Motion

There are three main ways to wait for motion completion.
1 setting wait parameter of move position() or move cartesian to True
2 using pyCub.wait motion done(sleep duration=0.01,

check collision=True)

this way you can change visualization speed
the function will return in moment when all joints are at the desired
position or when collision occures

in case of collision, pyCub.collision during motion is set to True
3 use pyCub.motion done(joints=None, check collision=True)

this way you can do other things while waiting
while not client.motion_done(): # while motion

DO SOMETHING
client.update_simulation(0.1) # update simulation

Lukáš Rustler pyCub B3M33HRO 14 / 15

Logging

things in the terminal can be logged using pyCub.logger

it uses python logging library
there is 5 levels (debug, info, warning, error, critical); debug is not
showing by default
e.g., pyCub.logging.info("Information message")

if you set log.log in .yaml config to True, then the state of the robot
is also saved to .csv file

it can be used to “replay” the simulation later
the structure is timestamp;steps done;joint 0;...;joint n

in case of skin, there is also comma-separated output of each enabled
skin part

Lukáš Rustler pyCub B3M33HRO 15 / 15

